Etiqueta: integrals

Etiqueta: integrals

Integrals irracionals
8 de maig de 2022 General Oscar Alex Fernandez Mora

Calcula la integral $$\int\frac{x^2-3x+1}{x^3-5x^2+8x-4}dx$$ En aquest cas, és una integral racional. Factoritzarem el denominador i descompondrem la fracció en fraccions simples. Com$x^3-5x^2+8x-4=(x-1)(x-2)^2$ tenim: $$\frac{x^2-3x+1}{x^3-5x^2+8x-4}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{(x-2)^2}=$$$$=\frac{A(x-2)^2+B(x-1)(x-2)+C(x-1)}{(x-1)(x-2)^2}$$ Donem ara valors per a $x$ al numerador: Si $x=2$, llavors $-1=C$. Si $x=1$, llavors $-1=A$. Si $x=0$, llavors $1=4A+2B-C\Rightarrow1=-4+2B+1\Rightarrow B=2$.Per tant: $$\frac{x^2-3x+1}{x^3-5x^2+8x-4}=\frac{-1}{x-1}+\frac{2}{x-2}+\frac{-1}{(x-2)^2}$$D’aquesta manera: $$\int\frac{x^2-3x+1}{x^3-5x^2+8x-4}dx=\int\frac{-1}{x-1}dx+\int\frac{2}{x-2}dx+\int\frac{-1}{(x-2)^2}dx=$$$$=\boxed{-\ln(x-1)+2\ln(x-2)+\frac{1}{x-2}+C}$$

Read More
Càlcul de l’àrea entre dues funcions
17 de juny de 2020 General Oscar Alex Fernandez Mora

Calcula l’àrea compresa entre les funcions $f(x)=x^2$ i la funció $g(x)=x$. Primer ens caldrà trobar els punts de tall de les dues funcions. Ens caldrà resoldre l’equació: $$x^2=x \rightarrow x(x-1)=0\rightarrow x=0; x=1$$Fixeu-vos que podem interpretar l’àrea com la resta de dues integrals definides: $$A_{regió}=\left|\int_{0}^{1} x dx\right|-\left|\int_{0}^{1} x^2 dx\right|=\left|\left[\frac{x^2}{2}\right]{0}^{1}\right|-\left|\left[\frac{x^3}{3}\right]{0}^{1}\right|=\frac{1}{6}$$

Read More