LEMNISCATA
Matemàtiques
A continuació teniu els exàmens de les proves PAU a Catalunya del 2000 al 2023 de Química. Examen de Selectivitat juny 1999-2000 Enunciat Solució Examen de Selectivitat setembre 1999-2000 Enunciat Solució Examen de Selectivitat juny 2000-2001 Enunciat Solució Examen de Selectivitat setembre 2000-2001 Enunciat Solució Examen de Selectivitat juny 2001-2002 Enunciat Solució Examen de Selectivitat
Read MoreCalcula, en graus, els tres angles d’un triangle sabent que el menor és la meitat de l’angle més gran i que la suma de l’angle més petit i l’angle més gran és el doble de l’altre angle. Siguin $A\leq B\leq C$ els tres angles del triangle. Sabem que els tres angles d’un triangle sempre sumen
Read MoreConsidera els punts A(0,0,1) , B(1,0,-1) , C(0,1,-2) i D(1,2,0) Calcula el mòdul dels vectors $\vec{AB}$ i $\vec{AC}$ $$\vec{AB} = (1,0,-2)$$$$|\vec{AB}| = \sqrt{1^2+0^2+(-2)^2}=\sqrt{5}$$$$\vec{AC} = (0,1,-3)$$$$|\vec{AC}| = \sqrt{0^2+1^2+(-3)^2}=\sqrt{10}$$ Els vectors $\vec{AB}$ , $\vec{AC}$ i $\vec{AD}$ són linealment independents? $$\vec{AB} = (1,0,-2) , \vec{AC} = (0,1,-3) , \vec{AD} = (1,2,-1)$$$$\left| \begin{array}{ccc}1 & 0 & 2 \\0 &
Read MoreConsidereu la recta $r$ i el pla $\pi$ donats per les equacions següents: $r:~\dfrac{x+1}2=\dfrac{y-2}1=\dfrac{z-1}0\qquad\pi:~x-2y-z=4$$ [a)] Estudieu la posició relativa de la recta i el pla.[b)] En cas que la recta talli al pla, calculeu el punt de tall i l’angle que formen. En cas contrari, calculeu la distància entre la recta i el pla.[c)] Determineu
Read MoreConsidere las matrices $$A=\begin{pmatrix}2&3\\-1&-2\end{pmatrix}\qquad B=\begin{pmatrix}-1&-3\\1&2\end{pmatrix}$$[a)] Compruebe que las matrices $A$ y $B$ son regulares (o inversibles) y calcule sus matrices inversas.[b)] Resuelva la ecuación matricial $AXB=A^t-3B$, donde $A^t$ denota la matriz traspuesta de $A$.[a)] Una matriz es regular si su determinante es distinto de $0$: $|A|=\begin{vmatrix}2&3\\-1&-2\end{vmatrix}=-4+3=-1\ \qquad |B|=\begin{vmatrix}-1&-3\\1&2\end{vmatrix}=-2+3=1$ Luego ambas matrices son regulares.La matriz inversa
Read MoreConsidere el siguiente sistema de ecuaciones en función del parámetro $a$: $$\left\{\begin{array}{rl}x+y-z&=4\\ x+a^2y-z&=3-a\\ x-y+az&=1\end{array}\right.$$ Para discutir el sistema utilizamos el teorema de Rouché-Fröbenius. Comenzamos escribiendo las matrices de coeficientes y ampliada del sistema: $$M=\begin{pmatrix}1&1&-1\\1&a^2&-1\\1&-1&a\end{pmatrix}\qquad M^*=\begin{pmatrix}1&1&-1&4\\1&a^2&-1&3-a\\1&-1&a&1\end{pmatrix}$$ Calculamos eel rango de la matriz de coeficientes: $$\begin{vmatrix}1&1&-1\\1&a^2&-1\\1&-1&a\end{vmatrix}=a^3-1+1+a^2-a-1=a^3+a^2-a-1=$$ $$=(a-1)(a^2+2a+1)=(a-1)(a+1)^2 $$ Determinante que se anula para $a=1$ y $a=-1$. [$\boldsymbol{*}$]
Read More