Mes: novembre de 2020

Mes: novembre de 2020

Sistemes homegenis
25 de novembre de 2020 Àlgebra, Matemàtiques Oscar Alex Fernandez Mora

Es considera el sistema d’equacions: $$\left\{\begin{array}{rl}x+y-(1-a^2)z&=0\\2x+4y+6z&=0\\2x+5y+z&=0\end{array}\right.$$ Calcula raonadament els valors del paràmetre a perquè el sistema tingui solucions diferents de la solució trivial $(0,0,0)$. Es tracta d’un sistema homogeni. Perquè aquest sistema tingui solucions diferents de la trivial, el sistema ha de ser compatible indeterminat.Discutim el sistema utilitzant el teorema de Rouché-Frobenius. Escrivim el sistema

Read More
El teorema de Rouché-Fröbenius
22 de novembre de 2020 Àlgebra, Matemàtiques Oscar Alex Fernandez Mora

Sigui un sistema de $m$ equacions lineals amb $n$ incògnites $$\left\{\begin{aligned}a_{11}x_1&+a_{12}x_2&+\cdots &+a_{1n}x_n&=b_1\\a_{21}x_1&+a_{22}x_2&+\cdots &+a_{2n}x_n&=b_2\\&\vdots&\ddots&&\vdots\\a_{m1}x_1&+a_{m2}x_2&+\cdots &+a_{mn}x_n&=b_m\end{aligned}\right.$$ que en forma matricial s’escriu de la forma $$\underbrace{\begin{pmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}\end{pmatrix}}_{M}\cdot \underbrace{\begin{pmatrix}x_1\\ x_2\\ \vdots\\ x_n\end{pmatrix}}_X=\underbrace{\begin{pmatrix}b_1\\ b_2\\ \vdots\\ b_m\end{pmatrix}}_N$$$$M\cdot X=N$$ Anomenarem la matriu de coeficients a la matriu $M$. Anomenarem la matriu ampliada a la matriu $M^*$ que és la matriu

Read More
Problema sobre matriu inversa
5 de novembre de 2020 Matemàtiques Oscar Alex Fernandez Mora

Considereu les matrius: $$A=\begin{pmatrix}1&2&-k\\1&-2&1\\k&2&-1\end{pmatrix}\qquad B=\begin{pmatrix}1&1&1\\0&2&2\\0&0&3\end{pmatrix}$$ Discutiu per a quins valors del paràmetre real $k$ la matriu $A$ té matriu inversa. Una matriu A té matriu inversa si el seu determinants és diferent de 0. Calculem el determinants de A: $$|A|=\begin{vmatrix}1&2&-k\\1&-2&1\\k&2&-1\end{vmatrix}=2+2k-2k-2k^2+2-2=-2k^2+2$$ Igualem a 0 aquest determinant i resolem: $$-2k^2+2=0~;\\ k^2=1~;\\ k=\pm1$$ Després, la matriu $A$ té

Read More