Categoria: General

Categoria: General

Examen selectivitat Catalunya. Juny de 2014 – Sèrie 3 – Qüestió 2
20 de gener de 2023 General Oscar Alex Fernandez Mora

Considereu el punt $A=\left( 1,2,3 \right)$. Calculeu el punt simètric del punt $A$ respecte de la recta d’equació. $$r:\left( x,y,z \right)=\left( 3+\lambda,1,3-\lambda \right)$$ 1r pas: Busquem l’equació del pla $\pi’$ que passa pel punt $A$ i que és perpendicular a $r$. Com a vector normal podem fer servir el vector director de r, és a dir

Read More
Problema d’optimització. Resistència de flexió.
9 d'octubre de 2022 General Oscar Alex Fernandez Mora

La resistència de flexió d’una biga de secció rectangular és directament proporcional a la base i directament proporcional, també, al quadrat de l’altura d’aquesta secció. Calcula les dimensions que ha de tenir la secció rectangular d’una biga fabricada a partir del tronc cilíndric d’un arbre que fa un metre de diàmetre per tal que tingui

Read More
PROBLEMA 5 EXAMEN SELECTIVITAT JUNY 2015
23 de maig de 2022 General Oscar Alex Fernandez Mora

Una cèl·lula fotoelèctrica és il·luminada amb llum blava de 4750 Å. La freqüència llindar de la cèl·lula és de $4.75\cdot10^{14}$ Hz. Calculeu:  a) L’energia dels fotons incidents i el treball d’extracció característic del metall de la cèl·lula. $\lambda =4750\ Å\cdot\frac{10^{-10}\ m}{1\ Å }= 4.75\cdot10^{-7}\ m$ $f= \frac{c}{\lambda}=\frac{3.00\cdot10^8}{4.75\cdot10^{-7}} = 6.32\cdot10^{14}$ Hz $E = hf = 4.19\cdot^{-19}$ J

Read More
Problema geometria. Posició relativa i distància
20 de maig de 2022 General Oscar Alex Fernandez Mora

Considereu la recta $\displaystyle r: \; \frac{x-1}{3}=\frac{y+2}{-1}=z-a$ i el pla $\pi: \; 2x+y-5z=5$. Estudieu la posició relativa de la recta $r$ i el pla $\pi$ en funció del paràmetre $a$. El vector director de la recta és $v_r = (3, −1, 1)$; el punt $P = (1, −2, a)$ pertany a la recta $r$. Per altra banda, el vector normal

Read More
Integrals irracionals
8 de maig de 2022 General Oscar Alex Fernandez Mora

Calcula la integral $$\int\frac{x^2-3x+1}{x^3-5x^2+8x-4}dx$$ En aquest cas, és una integral racional. Factoritzarem el denominador i descompondrem la fracció en fraccions simples. Com$x^3-5x^2+8x-4=(x-1)(x-2)^2$ tenim: $$\frac{x^2-3x+1}{x^3-5x^2+8x-4}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{(x-2)^2}=$$$$=\frac{A(x-2)^2+B(x-1)(x-2)+C(x-1)}{(x-1)(x-2)^2}$$ Donem ara valors per a $x$ al numerador: Si $x=2$, llavors $-1=C$. Si $x=1$, llavors $-1=A$. Si $x=0$, llavors $1=4A+2B-C\Rightarrow1=-4+2B+1\Rightarrow B=2$.Per tant: $$\frac{x^2-3x+1}{x^3-5x^2+8x-4}=\frac{-1}{x-1}+\frac{2}{x-2}+\frac{-1}{(x-2)^2}$$D’aquesta manera: $$\int\frac{x^2-3x+1}{x^3-5x^2+8x-4}dx=\int\frac{-1}{x-1}dx+\int\frac{2}{x-2}dx+\int\frac{-1}{(x-2)^2}dx=$$$$=\boxed{-\ln(x-1)+2\ln(x-2)+\frac{1}{x-2}+C}$$

Read More
Juny de 2000 – Sèrie 1 – Qüestió 3. Catalunya
6 de novembre de 2021 General Oscar Alex Fernandez Mora

Donat el sistema d’equacions: $$\left.\begin{array}{rrrrrrr} 3x&–&2y&+&z&=&5 \\ 2x&–&3y&+&z&=&4 \end{array}\right\rbrace$$ a) Afegiu-hi una equació lineal de manera que el sistema resultant sigui incompatible. b) Afegiu-hi una equació lineal de manera que el sistema resultant sigui compatible indeterminat. Resoleu el sistema que s’obtingui. a) Afegiu-hi una equació lineal de manera que el sistema resultant sigui incompatible. Resposta

Read More
Equacions matricials
6 d'octubre de 2021 General Oscar Alex Fernandez Mora

Resolgui l’equació matricial $AX + B = A^2$, sent les matrius $$A = \left (\begin {array} {ccc}0 & 1 & 1 \\1 & 0 & 0 \\0 & 0 & 1\end {array}\right);B = \left (\begin {array} {ccc}1 & -1 & 1 \\1 & -1 & 0 \\-1 & 2 & 3\end {array}\right)$$ $AX+B=A^2$$AX=A^2 – B$$A^{-1}

Read More
Problema 2 examen de matemàtiques CCSS 18 juny de 2020
2 d'abril de 2021 General Oscar Alex Fernandez Mora

Un concessionari de motos comercialitza dos models, un de $125$ cc i un altre de$50$ cc. Per cada moto de $12$5 cc que ven, guanya $1000$ euros i per cada moto de $50$ cc,guanya $600$ euros. D’altra banda, per tal de satisfer els objectius marcats pelfabricant, cal que el concessionari compleixi les condicions següents:a) Vendre

Read More
Problema 5 examen de matemàtiques CCSS 18 de juny de 2020
2 d'abril de 2021 General Oscar Alex Fernandez Mora

Un comerciant pot comprar articles a $350$ euros la unitat. Si els ven a $750$ euros la unitat, en ven $30$. Sabem que la relació entre aquestes dues variables (el preu de venda i el nombre d’unitats venudes) és lineal i que, per cada descompte de $20$ euros en el preu de venda, incrementa les

Read More
Examen EVAU MATEMATICAS II ARAGÓN 2020
2 d'abril de 2021 General Oscar Alex Fernandez Mora

Dau lo siguient sistema d’equacions: $$\left\{\begin{array}{rl}x+y+(m+1)z&=2\\ x+(m-1)y+2z&=1\\2x+my+z&=-1\end{array}\right.$$ Discuta lo sistema seguntes las valors de $m\in\mathbb R$. Dadas las matrices $A=\begin{pmatrix}1&0&3\\-1&0&1\end{pmatrix},~B=\begin{pmatrix}0&2&1\\1&0&1\end{pmatrix},~C=\begin{pmatrix}-1&1\\-1&0\end{pmatrix}$: Calcule, si ye posible, $(A\cdot B^t)^{-1}$. Comprebe que, $C^3=I$, an $I$ ye la matriz identidat, y calcule $C^{16}$. Resuelta lo sistema matricial $$\left\{\begin{array}{rl}X-2Y&=\begin{pmatrix}0&3&3\\0&-2&0\end{pmatrix}\\2X+3Y&=\begin{pmatrix}7&6&-1\\14&3&7\end{pmatrix}\end{array}\right.$$ Se considera la dreita $r\equiv~\left\{\begin{array}{rl}x+z&=1\\2x+y&=3\end{array}\right.$ Calcule la equación d’o plano que contiene

Read More