LEMNISCATA
Matemàtiques, física, química…
En una sala hi ha 20 persones: 14 llegeixen el diari, 10 prenen cafè i 8 fan ambdues coses. Si seleccionem dues persones a l’atzar, calculem la probabilitat que:
Dades inicials
Calculem:
Total de parelles possibles: \[ \displaystyle\binom{20}{2} = \displaystyle\frac{20 \cdot 19}{2} = 190 \]
a) Les dues prenguin cafè i no llegeixin el diari. Només prenen cafè: 2 persones. \[ \displaystyle\binom{2}{2} = 1 \] \[ P(a) = \frac{\displaystyle\binom{2}{2}}{\displaystyle\binom{20}{2}} = \displaystyle\frac{1}{190} \]
b) Les dues només facin una de les dues coses. Només cafè (2) o només diari (6), total 8 persones.
\[ P(b) = \displaystyle\frac{\displaystyle\binom{2}{2} + \displaystyle\binom{6}{2}}{\displaystyle\binom{20}{2}} = \displaystyle\frac{16}{190} = \displaystyle\frac{8}{95} \]
c) Cap de les dues no faci res. No fan res: 4 persones. \[ \displaystyle\binom{4}{2} = \displaystyle\frac{4 \cdot 3}{2} = 6 \] \[ P(c) = \displaystyle\frac{\displaystyle\binom{4}{2}}{\displaystyle\binom{20}{2}} = \displaystyle\frac{6}{190} = \displaystyle\frac{3}{95} \]
d) Les dues facin ambdues coses. Fan ambdues coses: 8 persones. \[ \displaystyle\binom{8}{2} = \displaystyle\frac{8 \cdot 7}{2} = 28 \] \[ P(d) = \displaystyle\frac{\displaystyle\binom{8}{2}}{\displaystyle\binom{20}{2}} = \displaystyle\frac{28}{190} = \displaystyle\frac{14}{95} \]
Respostes finals