LEMNISCATA
Matemàtiques
$$|A| = -a^2 + a = 0 \implies a = 0, \; a = 1$$
$$(A|B) = \begin{pmatrix}
1 & -1 & 1 & | & -1 \\
0 & 2 & 0 & | & 2 \\
2 & -3 & 2 & | & -5
\end{pmatrix}$$
Operem $f_3 – 2 f_1$ per obtenir:
$$\begin{pmatrix}
1 & -1 & 1 & | & -1 \\
0 & 2 & 0 & | & 2 \\
0 & -1 & 0 & | & -3
\end{pmatrix}$$
Operem $f_3 + \frac{1}{2} f_2$ per obtenir:
$$\begin{pmatrix}
1 & -1 & 1 & | & -1 \\
0 & 2 & 0 & | & 2 \\
0 & 0 & 0 & | & -2
\end{pmatrix}$$
Aleshores, $\operatorname{rg}(A) = 2 \neq \operatorname{rg}(A|B) = 3 \Rightarrow$ Sistema Incompatible.
$$(A|B) = \begin{pmatrix}
1 & -1 & 1 & | & -1 \\
1 & 1 & 0 & | & 2 \\
2 & -4 & 3 & | & -5
\end{pmatrix}$$
Operem $f_2 – f_1$ per obtenir:
$$\begin{pmatrix}
1 & -1 & 1 & | & -1 \\
0 & 2 & -1 & | & 3 \\
2 & -4 & 3 & | & -5
\end{pmatrix}$$
Operem $f_3 – 2 f_1$ per obtenir:
$$\begin{pmatrix}
1 & -1 & 1 & | & -1 \\
0 & 2 & -1 & | & 3 \\
0 & -2 & 1 & | & -3
\end{pmatrix}$$
Aleshores, $\operatorname{rg}(A) = 2 = \operatorname{rg}(A|B) = 2 \Rightarrow$ Sistema Compatible Indeterminat.
$(A|B) = \begin{pmatrix} 1 & -1 & 1 & | & -1 \\ 1 & 1 & 0 & | & 2 \\ 2 & -4 & 3 & | & -5 \end{pmatrix}$
Operem $f_2 – f_1$ per obtenir:
$$\begin{pmatrix} 1 & -1 & 1 & | & -1 \\ 0 & 2 & -1 & | & 3 \\ 2 & -4 & 3 & | & -5 \end{pmatrix}$$
Operem $f_3 – 2f_1$ per obtenir:
$$\begin{pmatrix} 1 & -1 & 1 & | & -1 \\ 0 & 2 & -1 & | & 3 \\ 0 & -2 & 1 & | & -3 \end{pmatrix}$$
Aleshores, tenim les expressions següents per a les incògnites:
$$z = 2y – 3, \quad x = 2 – y$$
Per tant, la solució és:
$$y = \lambda, \quad x = 2 – \lambda, \quad z = 2\lambda – 3$$