LEMNISCATA
Matemàtiques
Una integral impròpia en format es pot escriure de la següent manera: $$\int_{a}^{b} f(x) dx$$ On $a$ i $b$ són els límits d’integració i $f(x)$ és la funció que es vol integrar. Per exemple, la integral impròpia següent: $$\int_{1}^{\infty} \frac{1}{x^2} dx$$ Per calcular aquesta integral, haurem de fer servir la fórmula general per a integrar
Read MoreCalcula la integral $$\int\frac{x^2-3x+1}{x^3-5x^2+8x-4}dx$$ En aquest cas, és una integral racional. Factoritzarem el denominador i descompondrem la fracció en fraccions simples. Com$x^3-5x^2+8x-4=(x-1)(x-2)^2$ tenim: $$\frac{x^2-3x+1}{x^3-5x^2+8x-4}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{(x-2)^2}=$$$$=\frac{A(x-2)^2+B(x-1)(x-2)+C(x-1)}{(x-1)(x-2)^2}$$ Donem ara valors per a $x$ al numerador: $$\frac{x^2-3x+1}{x^3-5x^2+8x-4}=\frac{-1}{x-1}+\frac{2}{x-2}+\frac{-1}{(x-2)^2}$$D’aquesta manera: $$\int\frac{x^2-3x+1}{x^3-5x^2+8x-4}dx=\int\frac{-1}{x-1}dx+\int\frac{2}{x-2}dx+\int\frac{-1}{(x-2)^2}dx=$$$$=\boxed{-\ln(x-1)+2\ln(x-2)+\frac{1}{x-2}+C}$$
Read MoreHalla el área del recinto rayado que aparece en la figura adjunta sabiendo que la parte curva tiene como ecuación $y = \displaystyle\frac{2x+2}{1-x}$ El área del trozo bajo la parte curva sería:$$\int_{-1}^0 \frac{2x+2}{1-x} dx$$ Podemos expresar la integral de la forma:$$\int_{-1}^0 \frac{2x+2}{1-x} dx = \int_{-1}^0 \frac{2x}{1-x} dx +\int_{-1}^0 \frac{2}{1-x}dx=$$ Realizando el cambio de variable adecuado y
Read More