LEMNISCATA
Matemàtiques, física, química…
Primer calculem el moment d’inèrcia del volant: \[ I = \frac{1}{2} m \cdot R^2 = \frac{1}{2} \cdot 250 \, \text{kg} \cdot (0,25 \, \text{m})^2 = 7,8125 \, \text{kg m}^2 \]La velocitat angular \( \omega = 250 \, \text{min}^{-1} \cdot \frac{2\pi}{60} = 26,18 \, \text{rad/s} \)
El treball necessari per accelerar el volant val: \[ W_{1-2} = \frac{1}{2} I (\omega_2^2 – \omega_1^2) \text{ i com que } \omega_1 = (\tau – \tau_f) \cdot \varphi, \]\[ (\tau – 15) \cdot \varphi = \frac{1}{2} \cdot 7,8125 \, \text{kg m}^2 \cdot ((26,18 \, \text{rad/s})^2 – 0) \]d’on 2677,30 J = \( (\tau – 15) \cdot \varphi \)
Llavors, ens calculem \( \varphi \), a partir de les equacions de l’acceleració i el temps: \[ \omega_f = \omega_0 + \alpha t \text{ i } \varphi = \varphi_0 + \omega_0 t + \frac{1}{2} \alpha \cdot t^2 \]26,18 rad/s = 0 + \( \alpha \cdot 3 \, \text{s} \); d’on \( \alpha = 8,7266 \, \text{rad/s}^2 \)\[ \varphi = 0 + 0 + \frac{1}{2} \cdot 8,7266 \, \text{rad/s}^2 \cdot (3 \, \text{s})^2 = 39,27 \, \text{rad} \]2677,30 J = \( (\tau – 15) \cdot 39,27 \, \text{rad} \); d’on \( \tau = 83,18 \, \text{Nm} \)
Finalment, \[ P = \frac{W}{t} = \frac{\tau \varphi}{t} = \frac{83,18 \, \text{Nm} \cdot 39,27 \, \text{rad}}{3 \, \text{s}} = 1088,82 \, \text{W} \]
L’energia acumulada a 100 min\(^{-1}\) val: \[ \omega = 100 \, \text{min}^{-1} \cdot \frac{2\pi}{60} = 10,472 \, \text{rad/s} \]\[ E_c = \frac{1}{2} \omega^2 I = \frac{1}{2} \cdot (10,472 \, \text{rad/s})^2 \cdot 7,8125 \, \text{kg m}^2 = 428,36 \, \text{J} \]