LEMNISCATA
Matemàtiques, física, química…
1 kp/cm² = 98,0665 kPa
$$P_R = 0,614 \cdot 98,0665 \approx 60,2 \text{ kPa}$$
$$P_E = 91,233 \text{ kPa (ja en kPa)}$$
Àrees de les seccions:
$$A_E = \frac{\pi D_E^2}{4} = \frac{\pi (0,20)^2}{4} \approx 0,03142 \text{ m²}$$
$$A_R = \frac{\pi D_R^2}{4} = \frac{\pi (0,50)^2}{4} \approx 0,19635 \text{ m²}$$
Velocitats (Q = 0,25 m³/s):
$$V_E = \frac{Q}{A_E} = \frac{0,25}{0,03142} \approx 7,95 \text{ m/s}$$
$$V_R = \frac{Q}{A_R} = \frac{0,25}{0,19635} \approx 1,27 \text{ m/s}$$
Per una línia de corrent incompressible:
$$\frac{P_R}{\rho g} + \frac{V_R^2}{2g} + z_R = \frac{P_E}{\rho g} + \frac{V_E^2}{2g} + z_E + h_f$$
On $h_f$ és la pèrdua de càrrega. Reordenem per a $h_f$:
$$h_f = \left(\frac{P_E}{\rho g} – \frac{P_R}{\rho g}\right) + \left(\frac{V_E^2}{2g} – \frac{V_R^2}{2g}\right) + (z_E – z_R)$$
$$\frac{P}{\rho g} \text{ en m} = \frac{P \text{(Pa)}}{\rho g}$$
$$\rho = 895 \text{ kg/m³}, g = 9,81 \text{ m/s²}$$
$$\frac{P_E}{\rho g} = \frac{91,233}{895 \cdot 9,81} \approx \frac{91,233}{8774} \approx 10,39 \text{ m}$$
$$\frac{P_R}{\rho g} = \frac{60,200}{895 \cdot 9,81} \approx \frac{60,200}{8774} \approx 6,86 \text{ m}$$
$$\frac{V_E^2}{2g} = \frac{7,95^2}{2 \cdot 9,81} \approx \frac{63,2}{19,62} \approx 3,22 \text{ m}$$
$$\frac{V_R^2}{2g} = \frac{1,27^2}{19,62} \approx \frac{1,61}{19,62} \approx 0,082 \text{ m}$$
$$z_E – z_R = -4 \text{ m} \quad (\text{E està 4 m sota R})$$
$$h_f = (10,39 – 6,86) + (3,22 – 0,082) – 4$$
$$h_f = 3,53 + 3,138 – 4 \approx 2,668 \text{ m}$$
$$\boxed{h_f \approx 2,67 \text{ m de columna d’oli}}$$