LEMNISCATA
Matemàtiques
De totes les rectes que passen pel punt $P(0, 2, -1)$, cercau la que talla les rectes d’equacions: $$(x, y, z)=(1, 1, 2)+t(2, -1, 0)\quad (x, y, z)= (0, 1, 1)+s(-3, 1, 2)$$ 1.Haurem de trobar un pla $\pi$ que conté a $P$ i a la recta $s$, necessitarem trobar un punt $S$ de la
Read MorePer calcular la distància entre dos plans en l’espai tridimensional, es pot utilitzar la fórmula següent: $$d = |(Ax1 + By1 + Cz1 – D) / sqrt(A^2 + B^2 + C^2)|$$ On $A$, $B$ i $C$ són els coeficients de la normal del primer pla, i $D$ és la constant del primer pla. $x_1$, $y-1$
Read MorePer calcular l’angle entre una recta i un pla, primer hem de trobar un vector normal del pla i un vector director de la recta. Suposem que tenim la recta r que passa pel punt $P(1, 2, 3)$ i té la direcció del vector $\vec{v} = (2, 1, 1)$, i el pla π que passa
Read MorePer calcular l’angle entre dos plans en l’espai, primerament has de trobar el vector normal de cadascun dels plans. A continuació, pots utilitzar la fórmula de l’angle entre dos vectors per trobar l’angle entre els vectors normals. La fórmula de l’angle entre dos vectors és: $$\cos(\theta) = \frac{a \cdot b}{|a| \cdot |b|}$$ On $a$ i
Read MoreCalcula l’angle que formen les rectes $r$ i $s$, i les equacions són les següents: $$r\equiv\frac{x+2}{3} = \frac{y}{-1} = \frac{z-3}{2}; s \equiv \left\{\begin{array}{l } x=4-3t \\y=-2+t \\z=1+t \end{array}\right.$$ Per trobar l’angle entre dues rectes només cal determinar l’angle que formen els vectors directors.Farem servir el producte escalar per determinar l’angle entre dos vectors Vector director
Read MoreConsidereu el punt $A=\left( 1,2,3 \right)$. Calculeu el punt simètric del punt $A$ respecte de la recta d’equació. $$r:\left( x,y,z \right)=\left( 3+\lambda,1,3-\lambda \right)$$ 1r pas: Busquem l’equació del pla $\pi’$ que passa pel punt $A$ i que és perpendicular a $r$. Com a vector normal podem fer servir el vector director de r, és a dir
Read MoreConsidereu la recta $\displaystyle r: \; \frac{x-1}{3}=\frac{y+2}{-1}=z-a$ i el pla $\pi: \; 2x+y-5z=5$. El vector director de la recta és $v_r = (3, −1, 1)$; el punt $P = (1, −2, a)$ pertany a la recta $r$. Per altra banda, el vector normal del pla $\pi$ és $v_π = (2, 1, −5)$. Comprovem si $v_r$
Read MoreSiguin $r$ i $s$ les rectes de $R^3$ d’equacions: $$r:x+5=y-5=\displaystyle\frac{z-3}{2}$$ $$s:\displaystyle\frac{x-3}{2}=\displaystyle\frac{y-2}{3}=\displaystyle\frac{z+1}{-1}$$ Els vectors directors de les rectes $r$ i $s$ són: $v_r=(1,1,2)$ i $v_s=(2,3,-1)$. Els vectors $v_r$ i $v_s$ no són proporcionals, ja que un no és múltiple de l’altre i per tant les rectes $r$ i $s$ no són paral·leles. El producte escalar dels
Read MoreCalculau les dimensions d’una capsa amb les dues tapes de base quadrangular de volum $64$ metres cúbics de superfície mínima. Comprovau que la solució obtinguda és un mínim. Consideri las rectes $$r \equiv \frac{x-1}{2}=\frac{y+1}{m}=z \qquad \quad s \equiv \left\{x+nz = -2 \atop y -z = -3\right.$$ Troba els valors de $m$ i $n$ per als
Read MoreConsidera el següent sistema d’equacions $$\left.\begin{array}{ccc}x+3y-\beta z & = & -3 \\2x+(\beta-5)y+z & = & 4\beta+2 \\4x+(\beta-1)y-3z & = & 4\end{array}\right\}$$ Discuteix el sistema pels diferents valors de $\beta$ Hi ha algun valor de $\beta$ per al qual $x=1$, $y=–3$, $z=–1$ sigui l’única solució del sistema? Resol el sistema per al cas o casos en
Read More