LEMNISCATA
Matemàtiques, física, química…
a) Per a esferes: \[v_L = \frac{2}{9} \frac{R^2}{\eta} g (\rho_s – \rho)\]\[v_L(20°C) = \frac{2}{9} \frac{(0,1 \cdot 10^{-2} \text{ m})^2}{1,3 \text{ Pa·s}} \cdot 9,81 \text{ m/s}^2 (7,800 – 1,260) \text{ kg/m}^3 = 0,011 \text{ m/s}\]\[v_L(40°C) = \frac{2}{9} \frac{(0,1 \cdot 10^{-2} \text{ m})^2}{0,34 \text{ Pa·s}} \cdot 9,81 \text{ m/s}^2 (7,800 – 1,260) \text{ kg/m}^3 = 0,419 \text{ m/s}\]\[v_L(60°C) = \frac{2}{9} \frac{(0,1 \cdot 10^{-2} \text{ m})^2}{0,10 \text{ Pa·s}} \cdot 9,81 \text{ m/s}^2 (7,800 – 1,260) \text{ kg/m}^3 = 1,424 \text{ m/s}\]\[v_L(80°C) = \frac{2}{9} \frac{(0,1 \cdot 10^{-2} \text{ m})^2}{0,036 \text{ Pa·s}} \cdot 9,81 \text{ m/s}^2 (7,800 – 1,260) \text{ kg/m}^3 = 3,956 \text{ m/s}\]
b) Per a esferes: \[N_R = \frac{\rho v R}{\eta}\]\[N_R(20°C) = \frac{\rho v R}{\eta} = \frac{1,260 \text{ kg/m}^3 \cdot 0,011 \text{ m/s} \cdot 0,1 \cdot 10^{-2} \text{ m}}{1,3 \text{ Pa·s}} = 0,106 < 1\]\[N_R(40°C) = \frac{\rho v R}{\eta} = \frac{1,260 \text{ kg/m}^3 \cdot 0,419 \text{ m/s} \cdot 0,1 \cdot 10^{-2} \text{ m}}{0,34 \text{ Pa·s}} = 1,55 > 1\]\[N_R(60°C) = \frac{\rho v R}{\eta} = \frac{1,260 \text{ kg/m}^3 \cdot 1,424 \text{ m/s} \cdot 0,1 \cdot 10^{-2} \text{ m}}{0,10 \text{ Pa·s}} = 17,945 > 1\]\[N_R(80°C) = \frac{\rho v R}{\eta} = \frac{1,260 \text{ kg/m}^3 \cdot 3,956 \text{ m/s} \cdot 0,1 \cdot 10^{-2} \text{ m}}{0,036 \text{ Pa·s}} = 138,5 > 1\]
c) A 20 °C \( N_R < 1 \), és correcte aplicar Stokes. A 40 °C, 60 °C i 80 °C \( N_R > 1 \), no és correcte aplicar Stokes.