Etiqueta: examen selectivitat

Etiqueta: examen selectivitat

Examen selectivitat Catalunya. Juny de 2014 – Sèrie 3 – Qüestió 2
20 de gener de 2023 General Oscar Alex Fernandez Mora

Considereu el punt $A=\left( 1,2,3 \right)$. Calculeu el punt simètric del punt $A$ respecte de la recta d’equació. $$r:\left( x,y,z \right)=\left( 3+\lambda,1,3-\lambda \right)$$ 1r pas: Busquem l’equació del pla $\pi’$ que passa pel punt $A$ i que és perpendicular a $r$. Com a vector normal podem fer servir el vector director de r, és a dir

Read More
Juny de 2000 – Sèrie 1 – Qüestió 3. Catalunya
6 de novembre de 2021 General Oscar Alex Fernandez Mora

Donat el sistema d’equacions: $$\left.\begin{array}{rrrrrrr} 3x&–&2y&+&z&=&5 \\ 2x&–&3y&+&z&=&4 \end{array}\right\rbrace$$ a) Afegiu-hi una equació lineal de manera que el sistema resultant sigui incompatible. b) Afegiu-hi una equació lineal de manera que el sistema resultant sigui compatible indeterminat. Resoleu el sistema que s’obtingui. a) Afegiu-hi una equació lineal de manera que el sistema resultant sigui incompatible. Resposta

Read More
Problema 2 examen de matemàtiques CCSS 18 juny de 2020
2 d'abril de 2021 General, Programació lineal Oscar Alex Fernandez Mora

Un concessionari de motos comercialitza dos models, un de $125$ cc i un altre de$50$ cc. Per cada moto de $12$5 cc que ven, guanya $1000$ euros i per cada moto de $50$ cc,guanya $600$ euros. D’altra banda, per tal de satisfer els objectius marcats pelfabricant, cal que el concessionari compleixi les condicions següents:a) Vendre

Read More
Problema 5 examen de matemàtiques CCSS 18 de juny de 2020
2 d'abril de 2021 General Oscar Alex Fernandez Mora

Un comerciant pot comprar articles a $350$ euros la unitat. Si els ven a $750$ euros la unitat, en ven $30$. Sabem que la relació entre aquestes dues variables (el preu de venda i el nombre d’unitats venudes) és lineal i que, per cada descompte de $20$ euros en el preu de venda, incrementa les

Read More
Examen EVAU MATEMATICAS II ARAGÓN 2020
2 d'abril de 2021 General Oscar Alex Fernandez Mora

Dau lo siguient sistema d’equacions: $$\left\{\begin{array}{rl}x+y+(m+1)z&=2\\ x+(m-1)y+2z&=1\\2x+my+z&=-1\end{array}\right.$$ Discuta lo sistema seguntes las valors de $m\in\mathbb R$. Dadas las matrices $A=\begin{pmatrix}1&0&3\\-1&0&1\end{pmatrix},~B=\begin{pmatrix}0&2&1\\1&0&1\end{pmatrix},~C=\begin{pmatrix}-1&1\\-1&0\end{pmatrix}$: Calcule, si ye posible, $(A\cdot B^t)^{-1}$. Comprebe que, $C^3=I$, an $I$ ye la matriz identidat, y calcule $C^{16}$. Resuelta lo sistema matricial $$\left\{\begin{array}{rl}X-2Y&=\begin{pmatrix}0&3&3\\0&-2&0\end{pmatrix}\\2X+3Y&=\begin{pmatrix}7&6&-1\\14&3&7\end{pmatrix}\end{array}\right.$$ Se considera la dreita $r\equiv~\left\{\begin{array}{rl}x+z&=1\\2x+y&=3\end{array}\right.$ Calcule la equación d’o plano que contiene

Read More
Problema 1A. Exame EBAU. Convocatoria ordinaria
2 d'abril de 2021 General Oscar Alex Fernandez Mora

Un estudiante gastó 57 euros n’una papelería na compra d’un llibru, una calculadora y un estoxu. Sabemos que’l llibru cuesta’l doble que’l total de la calculadora y l’estoxu xuntos. a) ¿Ye posible determinar de forma única’l preciu del llibru? ¿Y el de la calculadora?b) Amás, si los precios del llibru, la calculadora y l’estoxu fueren,

Read More
Problema 1 examen de matemàtiques II 26 juny de 2020
29 de juny de 2020 Àlgebra Oscar Alex Fernandez Mora

Discuteix el sistema pels diferents valors de $\beta$ Com que la matriu del sistema és quadrada d’ordre $3$, els valors del paràmetre que fan que el sistema no sigui compatible determinat són aquells que anul·len el seu determinant.$$\begin{vmatrix}1&3&-\beta\\ \:\:2&\beta-5&1\\ \:\:4&\beta-1&-3\end{vmatrix}=0 \longrightarrow 2\beta^2-11\beta+18=0\longrightarrow\beta=2;\ \beta = 9$$ Els valors que fan que $rang M=3$ són, evidentment, $\beta

Read More