Etiqueta: cramer

Etiqueta: cramer

Sistema d’equacions per Cramer
21 d'octubre de 2024 Àlgebra, Matemàtiques Oscar Alex Fernandez Mora

Resoleu el següent sistema d’equacions Per resoldre el sistema d’equacions mitjançant la regla de Cramer, hem de seguir aquests passos: Recordem el sistema d’equacions: \begin{equation}\left\{\begin{array}{rcl}3x + 2y + z &= 1 \\ 5x + 3y + 4z &= 2 \\ x + y – z &= 1\end{array}\right.\end{equation} 1. Matriu de coeficients i determinant La matriu

Read More
Problema 1 examen de matemàtiques II
13 de febrer de 2024 Àlgebra, Matemàtiques Oscar Alex Fernandez Mora

Considere el siguiente sistema de ecuaciones en función del parámetro $a$: $$\left\{\begin{array}{rl}x+y-z&=4\\ x+a^2y-z&=3-a\\ x-y+az&=1\end{array}\right.$$ Para discutir el sistema utilizamos el teorema de Rouché-Fröbenius. Comenzamos escribiendo las matrices de coeficientes y ampliada del sistema: $$M=\begin{pmatrix}1&1&-1\\1&a^2&-1\\1&-1&a\end{pmatrix}\qquad M^*=\begin{pmatrix}1&1&-1&4\\1&a^2&-1&3-a\\1&-1&a&1\end{pmatrix}$$ Calculamos eel rango de la matriz de coeficientes: $$\begin{vmatrix}1&1&-1\\1&a^2&-1\\1&-1&a\end{vmatrix}=a^3-1+1+a^2-a-1=a^3+a^2-a-1=$$ $$=(a-1)(a^2+2a+1)=(a-1)(a+1)^2 $$ Determinante que se anula para $a=1$ y $a=-1$. [$\boldsymbol{*}$]

Read More
Sistema d’equacions
23 d'octubre de 2020 Matemàtiques Oscar Alex Fernandez Mora

Resoleu el següent sistema d’equacions: $$\left\{\begin{array}{ccc} 3x+2y+z=1\\ 5x+3y+4z=2\\ x+y-z=1 \end{array}\right.$$ Escrivim el sistema d’equacions en forma de matriu: $$\left\{\begin{array}{ccc} 3x+2y+z=1\\ 5x+3y+4z=2\\ x+y-z=1 \end{array}\right.\sim\begin{pmatrix}3&2&1&1\\ 5&3&4&2\\ 1&1&-1&1\end{pmatrix}\sim$$ Ho resoldrem per Cramer, calcularem els $\Delta$, $\Delta_x$, $\Delta_y$ i $\Delta_z$ $\Delta= \begin{vmatrix}3&2&1\\ \:5&3&4\\ \:1&1&-1\end{vmatrix}=-1$ $\Delta_x= \begin{vmatrix}1&2&1\\ \:2&3&4\\ \:1&1&-1\end{vmatrix}=4$ $\Delta_y= \begin{vmatrix}3&1&1\\ \:5&2&4\\ \:1&1&-1\end{vmatrix}=-6$ $\Delta_z= \begin{vmatrix}3&2&1\\ \:5&3&2\\ \:1&1&1\end{vmatrix}=-1$ Per tant, obtenim:

Read More
Problema 1 examen matemàtiques II 5 juny 2020
7 de juny de 2020 Matemàtiques Oscar Alex Fernandez Mora

Dadas las matrices $$A = \left(\begin{array}{ccc}2-m & 1 & 2m-1\\ 1 & m & 1\\ m & 1 & 1\end{array}\right) , X = \left(\begin{array}{c}x\\ y\\ z\end{array}\right) , B = \left(\begin{array}{c}2m^2-1\\ m\\ 1\end{array}\right)$$ considera el sistema de ecuaciones lineales dado por $X^tA=B^t$, donde $X^t$ , $B^t$ denotan las traspuestas. Discútelo según los distintos valores de $m$

Read More
Problema 6 examen matemàtiques CCSS 04.06.2020
5 de juny de 2020 Matemàtiques Oscar Alex Fernandez Mora

Determina razonadamente los valores del parámetro $m$ para los que el siguiente sistema de ecuaciones tiene más de una solución: $$\left.\begin{array}{ccc}2x+y+z & = & mx \\ x + 2y+ z & = & my \\ x + 2y+ 4z & = & mz \end{array}\right\}$$Resuelve el sistema anterior para el caso $m = 0$ y para

Read More
Problema 4
30 de maig de 2020 Matemàtiques Oscar Alex Fernandez Mora

Considera el sistema de ecuaciones $$\left\{\begin{array}{ccc}x+y+z & = & 0 \\ 2x+\lambda y+z & = & 2 \\ x+y+\lambda z & = & \lambda – 1\end{array}\right.$$ Determina el valor de $\lambda$ para que el sistema sea incompatible. Expresamos la matriz de los coeficientes ($A$) y la matriz ampliada ($A*$) $$(A|A^*) = \left(\begin{array}{ccc}1 & 1 &

Read More
Problema 5
27 de maig de 2020 Matemàtiques Oscar Alex Fernandez Mora

1. Clasifica el siguiente sistema según los valores del parámetro $m$$$\left.\begin{array}{ccc}2x+ my & = & 0 \\x + mz & = & m \\x + y+ 3z & = & 1\end{array}\right\}$$ Expresamos la matriz de los coeficientes y la matriz ampliada $$(A|A^*)=\left(\begin{array}{ccc|c}2 & m & 0 & 0 \\1 & 0 & m & m

Read More