LEMNISCATA
Matemàtiques
a) Aquest és un exemple d’un model de probabilitat de distribució binomial, ja que estem estudiant una situació en què els resultats possibles són “èxit” (en aquest cas, un aparcament està ocupat) i “fracàs” (un aparcament està buit), amb una probabilitat constant d’èxit (0,4) en cada intent i un nombre fix d’intents (en aquest cas, 10 aparcaments).
b) La probabilitat que hi hagi vuit cotxes aparcats en un dia determinat es pot calcular utilitzant la fórmula de la distribució binomial:
$$P(X=8)=\binom{10}{8}(0.4)^8(1−0.4)10^{−8}\approx0.0106$$
On “$X$” és el nombre d’aparcaments ocupats, “$10$” és el nombre total d’aparcaments, “$0.4$” és la probabilitat que un aparcament estigui ocupat, i “$1-0.4$” és la probabilitat que un aparcament estigui buit. Per tant, la probabilitat que hi hagi vuit cotxes aparcats és d’aproximadament $0.0106$.